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Genetic evaluation of eggshell color based on additive and 
dominance models in laying hens

Jun Guo1, Kehua Wang1,*, Liang Qu1, Taocun Dou1, Meng Ma1, Manman Shen1, and Yuping Hu1

Objective: Eggshells with a uniform color and intensity are important for egg production 
because many consumers assess the quality of an egg according to the shell color. In the 
present study, we evaluated the influence of dominant effects on the variations in eggshell 
color after 32 weeks in a crossbred population.
Methods: This study was conducted using 7,878 eggshell records from 2,626 hens. Heritability 
was estimated using a univariate animal model, which included inbreeding coefficients as 
a fixed effect and animal additive genetic, dominant genetic, and residuals as random effects. 
Genetic correlations were obtained using a bivariate animal model. The optimal diagnostic 
criteria identified in this study were: L* value (lightness) using a dominance model, and a* 
(redness), and b* (yellowness) value using an additive model. 
Results: The estimated heritabilities were 0.65 for shell lightness, 0.42 for redness, and 0.60 
for yellowness. The dominance heritability was 0.23 for lightness. The estimated genetic 
correlations were 0.61 between lightness and redness, –0.84 between lightness and yellowness, 
and –0.39 between redness and yellowness. 
Conclusion: These results indicate that dominant genetic effects could help to explain the 
phenotypic variance in eggshell color, especially based on data from blue-shelled chickens. 
Considering the dominant genetic variation identified for shell color, this variation should 
be employed to produce blue eggs for commercial purposes using a planned mating system.
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INTRODUCTION 

Eggshells with a uniform color and intensity are important for egg production because many 
consumers assess the quality of an egg according to the shell color. The influence of genetics 
on avian eggshell color has been known for many years, and there are differences in the 
causes and functions of egg color variations [1-3]. Estimating the variance components of 
eggshell color is helpful for assessing the genetic potential of the crossbred population of 
native blue-shelled chickens. In practical terms, eggshell color is one of the key factors that 
affect consumer acceptance. Intense and uniform egg colors have been selected in commer-
cial white and brown shelled layers for several decades [4,5]. The shell color has not been 
selected intensively in blue-shelled chickens. Determining the variability in genetic domi-
nance would increase the accuracy of narrow heritability and selection in mating systems.
  The pigments responsible for eggshell color are mainly protoporphyrins and biliverdins. 
Protoporphyrin IX is the most common pigment and it produces red, brown, and black 
colorations, whereas biliverdin and its zinc chelate yield blue and blue-green colorations 
[6-8]. Many regulators are presumably involved in the synthesis, transportation, and re-
lease of these pigments. Numerous studies have indicated that dominant genetic factors 
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are involved with eggshell coloration. Hutt [9] suggested that 
mutations in one of many genes can lead to tinted eggs in 
white lines. Genetic analysis has implicated dominance in 
the shell color formation procession where the dam's variance 
component has a stronger effect than that of the sire [5,10,11]. 
Redman and Shoffner [12] detected dominance based on 
analyses of covariance related to dams and sires. Other fac-
tors might also affect the variations in eggshell color, such 
as nutrition, disease, and age, but their contribution to shell 
color is limited [13,14].
  In chickens, eggshells are colorful and the lightness of the 
shell varies substantially within the same breed in some cases. 
Previous studies indicate that the eggshell color is influenced 
by dominance in poultry [15], but specific estimates have not 
been reported for chickens. In this study, we estimated the ad-
ditive and dominant genetic effects on variations in eggshell 
color in an F2 population using an animal model analysis.

MATERIALS AND METHODS 

Birds
The population selected for this study comprised a pure White 
Leghorn line, which was reciprocally crossed with Dongxiang 
blue-shelled chickens in an F2 design. These two parents are 
known to differ in terms of their eggshell traits. In the F1 gen-
eration, 49 cocks were mated with 639 hens. The F2 generation 
group comprised 25 half-sibs and 24 randomly mated families. 
The original data set comprised 7,878 records for eggshell 
color in 2,626 individual fowl. Only the most extreme values 
were removed from the analysis (i.e., values that varied by 
+3 and –3 standard deviations from the mean), whereas the 
moderate extreme values were retained as recommended by 
Hunter and Schmidt [16]. During the first week after hatching, 
all chicks were provided with artificial illumination through-
out the night. The photoperiod was then decreased by 1 h/wk 
until 9 h of light was provided. Pullets were exposed to natu-
ral light until they were transferred into single-hen cages at 
16 weeks of age. The light treatment was gradually increased 
by 1 h per week until 16 h of light was provided. The laying 
mash contained 16.5% crude protein and it provided 2,750 
kcal of metabolizable energy/kg. 
  Eggs were collected on five consecutive days in week 32. 
Shell colors were measured daily and the average for three or 
two eggs (if a hen laid only two eggs) was used as the value 
for each hen. The International Commission on Illumination 
L*a*b* color scale, where L* = lightness (100 = white and 0 
= black), a* = redness (green is toward the negative end of 
the scale and red towards the positive end), and b* = yellow-
ness (blue is toward the negative end and yellow toward the 
positive end of the scale), was used to determine the egg colors 
with a Portable Spectrophotometer CM-2300D (Minolta 
Cameras, Osaka, Japan).

Statistical analysis
The genetic and environmental components incorporated in 
the model were designed to reflect the data structure and they 
were inferred from previously reported genetic evaluations 
of eggshell color [13,17,18]. Data were analyzed with a uni-
variate animal model with an inverting dominance relationship 
matrix. As suggested by Hoeschele and van Raden, the mixed 
model included the individual inbreeding coefficients as fixed 
effects [19]. The inbreeding coefficient for each animal in the 
pedigree was calculated using ENDOG software [20]. The 
matrix notation for the model is as follows:
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where A and D are the additive and dominant animal rela-
tionship matrices, respectively.
  A normal distribution was assumed for all the random 
effects in all of the models, and the commonly used prior 
specification for variance components (inverse-Wishart, V 
= 1, nu = 0.002) was used for the preliminary analysis. How-
ever, the autocorrelations were too strong for dominance and 
residual variance. The residual was fixed as 1 in the analysis 
of shell lightness. For each model, one chain was run with 
500,000 iterations where the first 20,000 were discarded as a 
burn-in. The chain was thinned by 100 to yield 4,800 sam-
ples from the posterior distribution. Genetic and phenotypic 
correlations were conducted by bivariate analysis. Analyses 
were run in R version 2.10.1 (R Development Core Team, 
Vienna, Italy) using the MCMCglmm, version 2.25 and nadiv 
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version 2.14.3.1 packages [21,22]. The deviance information 
criterion (DIC) was used to detect significant effects of the 
additive and dominance genetic components of the models. 
The statistical significance of the genetic estimates (i.e., how 
much they differed from zero) was assessed by using 95% 
confidence intervals for the heritability estimates, and the 
dominance effects were calculated from the posterior distri-
butions [5].

RESULTS 

After data cleaning, the data set comprised 7,821 records for 
72 sires and 787 dams. Significant differences were tested 
between the parents with respect to the mean L*, a*, and b* 
values (Figure 1). In the F1 generation, the lightness (L* value) 
and yellowness (b* value) were close to those for blue-shelled 
chickens, and the redness (a* value) was in the middle near 
the mean for the parents. The coefficients of variation for the 
L*, a*, and b* values increased in the F2 generation compared 
with those in the parents and F1 generation. The normality 
of the shell color distribution was examined using the Kol-
mogorov–Smirnov test (p<0.01). For the birds in this study, 

the individual inbreeding coefficients ranged from zero to 
25% and the frequency distribution had a long tail. The mean 
and median inbreeding coefficients in the F2 generation were 
7.88% and 3.13%, respectively. The effective population size 
was 9.42.
  The results in Table 1 show that the goodness of fit dif-
fered for the models in terms of the dominant effects. Based 
on the DIC values, a model with additive and dominant effects 
was sufficient to evaluate the shell color with respect to the 
L* value. The DIC values for models based on the a* and b* 
measurements differed little with or without dominance 
effects. According to Ockham's razor strategy, we tested 
the additive model as the candidate. Preliminary tests with 
a covariate comprising the inbreeding coefficients detected 
significance differences for the fixed effect (p<0.01).

Figure 1. Boxplots of shell color measurements after 32 weeks in a crossbred population. Horizontal lines within each box plot denote the middle values and the circles 
outside the top/bottom are the mild extreme values. The measurements express as: (a) the lightness, (b) the redness, (c) the yellowness.

Table 1. Deviance information criterion values for eggshell color submodels

Item Additive model Dominance model

L* value 11,440.07 9,590.06
a* value 13,421.21 13,409.5
b* value 13,748.96 13,748.58
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  The estimated heritabilities of eggshell color are shown in 
Table 2, Figure 2 and 3. The model based on the L* value, 
which treated it as a random effect with additive and dominant 
genetic influences, had higher narrow heritability but the 
differences among the three traits were small compared with 
the overlapping confidence interval. The additive variances 
estimated for the three traits were close to each other.
  The autocorrelation was slightly high for the residual of the 
a* value (lag 100 = 0.16). However, the result was accepted 
considering the unimodal distribution of the posterior density 
(Figure 2, Supplementary S1, S2). The other autocorrelations 
were less than 0.10, which implied that the mixing of the Monte 
Carlo Markov chain (MCMC) was good. 
  Table 3 shows the phenotypic and genetic correlations be-
tween eggshell colors after 32 weeks. The estimated phenotypic 
correlations differed and the genetic correlations indicated 
moderate to strong relationships. The genetic and phenotypic 
correlations were highly negative, where they indicated an 
antagonistic relationship between the b* value and L* value. 

There were negative genetic relationships between the b* value 
and the other measurements.

DISCUSSION 

In the Chinese market, customers increasingly favor blue 
eggs. Thus, a breeding strategy needs to be developed to im-
prove the uniformity and persistence of the shell color in 
blue-shelled layers. In this study, we estimated the genetic 
parameters for shell color using dominance and additive 
models. The results showed that a dominance effect played 
an important role in the deposition of shell pigments.

Figure 2. Monte Carlo Markov chain realizations of the variance parameters in a shell lightness data. On the right panel the posterior probability density plot of the 
additive and dominant variance respectively.
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Table 3. Genetic and phenotypic correlations with shell color

Items L* value a* value b* value

L * value - 0.110 ± 0.024 –0.672 ± 0.013
a* value 0.612 ± 0.079 - 0.365 ± 0.020
b* value –0.844 ± 0.033 –0.387 ± 0.129 -
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  Moderate to high estimates of heritability for shell color 
would indicate a range for efficient selection. We also com-
pared our estimates with those obtained in previous studies. 
The heritability of the L* value appeared to be large com-
pared with the heritability estimates reported by Cavero et al 

[4] (Rhode Island Red = 0.46) and Goger et al [23] (Rhode 
Island Red = 0.55). However, they analyzed data collected 
from a brown-egg population whereas we used blue-white 
crossed layers. Our estimate is close to the values obtained 
for Barred Rock (0.62) [23] and Hy-line chickens (0.67) [24]. 

Figure 3. Trace and posterior density plots of additive (
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Previous estimates of the heritability of shell lightness ranged 
from 0.27 to 0.58, but they were measured using a reflec-
tometer [11,12,17]. We found that the estimated heritability 
of the a* value was the lowest among the three measure-
ments, where the value is similar to the estimate obtained 
by Cavero et al [4]. (Rhode Island Red = 0.43). Goger et al 
[23] also used Rhode Island Red lines to estimate genetic 
parameters based on the a* value and the estimated herita-
bility was 0.51. In the same study, the heritability was found 
to approach 0.32 for Barred Rock. Our estimate of herita-
bility for the b* value is similar to those reported by Goger 
et al [23], but larger than those reported by Cavero et al [4]. 
It appears that the b* value is likely to be influenced by the 
genetic background.
  In addition to the redness and yellowness, we explored the 
variance in dominance based on lightness measurements 
obtained in the animal model. The results agreed with the 
biochemical and molecular biological analyses. It is well 
known that protoporphyrins and biliverdins are responsible 
for brown and blue shells, respectively. In particular, proto-
porphyrins are highly concentrated in the external shell layers 
or in the cuticle, whereas biliverdin is distributed throughout 
the shell structure [25,26]. Moreover, Wang et al [27] report-
ed that the amount of eggshell pigments in the eggs of blue-
shelled chickens does not differ significantly from that in 
those of brown-shelled chickens such as Dongxiang chickens. 
Thus, the shell lightness depends on biliverdins and their 
derivatives, where the presence of more biliverdins will lead 
to a larger L* value. The genetic architecture of biliverdin 
formation in shells is associated with a retrovirus insertion, 
which led to the expression of the solute carrier organic anion 
transporter family member 1B3 gene in the shell gland [28]. 
The blue shell gene is dominant with respect to the white shell 
gene in chickens. Therefore, it was reasonable to identify 
variations in dominance in the white-blue shelled cross popu-
lation.
  Genetic correlations can be used to manage selection de-
cisions regarding specific traits. In this study, we examined 
the genetic and phenotypic correlations among the three shell 
color measurements. We compared our results with those 
obtained by Goger et al [23] but there were no similarities. 
They found a negative correlation between the L* and a* values, 
whereas we detected a positive correlation. The b* values and 
the other measurements were negatively correlated in the 
present study. A negative correlation was also identified be-
tween the L* and b* values in the previous study but it was 
weaker, whereas the a* and b* values were positively correlated. 
These differences may be explained by the specific genetic 
backgrounds considered, where the previous study used 
brown-shelled chickens and only one shell pigment was in-
vestigated. The present study considered white, blue, and 
tinted egg, as well as protoporphyrins and biliverdins.

CONCLUSION

In the present study, our genetic evaluation of eggshell color 
indicated that the shell lightness was under the control of 
dominant genetic factors. The estimated heritability was 
reduced compared with the model only with additive effects 
but the reliability of the estimated breeding values would 
be increased by the introduction of dominance effects. How-
ever, more research is required to estimate the advantages 
of incorporating a genetic dominance effect in the statistical 
model for a pure line. In this study, the variance in genetic 
dominance was analyzed in blue-shelled chickens, but this 
does not mean that a similar dominant effect will be iden-
tified in brown-shelled chickens. In practice, genetic effects 
may vary between populations, and thus it is important to 
investigate chickens with brown and white eggshells. This 
study showed that genetic dominance effects are important 
for variations in eggshell color, and these findings may have 
potential applications in mating systems. 
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